Projector Test
Screen
Slides Ready
Introduction: About Me

- Website created and maintained by me.
- Photos, Advocacy, & Documentation
- 32 States
- 4 Canadian Provinces
- 4475 Bridges Listed Currently
- 14 Years

- I work in the office and also handle historic bridge matters.
- Steel Fabricator
- Restoration/Relocation of Historic Bridges &
- Hot Rivets
The part of the bridge that spans the obstacle is the superstructure. The part of the bridge that holds the superstructure up is the substructure (piers and abutments).
The parts of a truss bridge experience forces in the form of tension (stretching apart) and compression (squeezing together). Engineers often picked different types of materials and designs for the different parts of a bridge based on these forces. An example is shown above.
The two most common truss configurations are shown above.
Truss Bridge Connections

The pieces of the framework of a truss bridge are held together by connections, sometimes also called joints. Most connections on historic bridges are either riveted or pinned, but can also be bolted or welded.
Overall, this is one of Michigan’s most well-known and historically significant railroad bridges. The four most significant parts of this complex, 1 Mile long bridge is shown above from south to north.
International RR Bridge

From North (Canada) To South (USA)

1895 through truss swing span. New addition in 1895.

1887 Fixed camelback through truss spans. Nine spans total. Originally 10 spans until southern span replaced by larger bascule span.

1913 Bascule Span. Replaced one original 1887 fixed camelback span at the north end of this section, and one lattice truss spans at south end.

1959 Vertical Lift Span. Replaced an original 1887 swing span.
Bridge is owned by Sault Ste. Marie Bridge Company, a subsidiary of the Wisconsin Central Ltd, which is itself a subsidiary of Canadian National Railway.
This photo from 1886 shows the construction of the bridge piers.
Overview: The swing bridge’s movable span turns on a pier 90 degrees to open a channel for the boats. They fell from favor in the 20th Century because their central pier limited the width of the channel.
Appearance: Some bridges may have the swing pier of the bridge offshore, which increased channel width. Other examples may be shorter at one end which will also have a counterweight, and are known as bobtail swing bridges. These are uncommon.
When the bridge was first built in 1887, a canal was not present here. The addition of this Canadian canal resulted in construction of this swing span ca. 1895 at the northern end.
ca. 1895-9 Swing Span

Views showing bridge open and closed.
ca. 1895-9 Swing Span

Swing pier with rack and pinion system leading to machinery room overhead.
ca. 1895-9 Swing Span

Swing pier with rack and pinion system leading to machinery room overhead.
The bridge continues to carry traffic, but some alterations have been made to strengthen the spans.
Overview: Charles H. Parker modified the Pratt design to create what became known as the Parker truss configuration. This design allowed one to use less materials to get the similar load capacity. The downside was the more complex design.

Appearance: Characterized by an arch-shaped (polygonal) top chord, with diagonals that follow the Pratt configuration.
Overview: Some bridges that appear to be simple Parker truss bridges but have exactly five sections of top chord are referred to more specifically as a Camelback truss.

Appearance: Characterized by exactly five different angled sections of top chord, with a Pratt layout of the diagonals.
The bridge originally included ten fixed Camelback through truss spans. In 1913, the southernmost span was removed.
The most significant surviving part of the original 1887 construction, these spans were built by the Dominion Bridge Company of Montreal (Lachine).
The President and Engineer for Dominion Bridge Company was Job Abbott.
Original plans for the bridge included details like this drawing for the portal bracing.
These spans can be considered a notable surviving bridge all on their own due to their length, number of spans, and age.
The bridge continues to carry traffic, but some alterations have been made to strengthen the oldest spans.
Overview: An adaptation of Warren truss technology that tends to show up on railroad bridges and with riveted connections. This category includes any multi-intersection Warren, generally beyond Double-Intersection (ie triple, quadruple, quintuple)

Appearance: Multiple Warren trusses offset and superimposed on each other, forming a lattice pattern.
The bridge originally included two 104 foot lattice truss spans (also called lattice girders). These were replaced, presumably in 1913.
Little is known about these spans and why their design differed from the Camelback spans. These two European-style 110 foot lattice pony truss bridges in Bruce County, Ontario are rare examples of the same type.
Overview: Bascule literally means “seesaw.” A bascule bridge operates by rotating up to open the channel. Counterweights provide the balance to make this motion possible. Offering good channel clearance, they are a popular type of movable bridge.
Because they are more stable, railroads almost always built single leaf bascule spans rather than the double-leaf type more common with highway bridges, where each leaf is a structurally independent cantilever functioning like holding your arm out.
Bascule Span

The International RR Bascule is a double leaf bascule that functions as a simple single span truss when closed, not as two independent cantilevers. Compare how the railroad bridge has a deeper (taller) truss in the center of the span.
The bascule span replaced one Camelback truss span and the two lattice truss spans in 1913.
It is the only surviving example of a type only built twice. (the other was in California.) It was also the longest bascule span in the world when completed in 1913 with a 336 foot span.
The California example (Over Cerritos Channel in Long Beach) no longer exists, and was built later in 1923-4 with some truss design differences.
The bascule was designed by the Strauss Bascule Bridge Company, run by famous Chicago engineer Joseph Strauss. He invented special locks at the center of the span which turn it into a simple truss when closed.
Charles Conrad Schneider, a noted bridge and mechanical engineer was the consulting engineer for the bascule bridge project.

Other works:
Niagara Canyon Railroad Bridge, British Columbia (Vancouver Island)

Washington Bridge (Over Harlem River), New York City

2nd Quebec Bridge, Member of Gov. Board of Engineers.
Engineering News drawings and photos showing the unique upper and lower locks at the center of the span.
Bascule Span

The bascule is also one of the earliest examples of Joseph Strauss’ “heel trunnion” type of bascule, where there are two axels (trunnions) around which rotation occurs, one for the leaf, the other for the counterweight.
Each bascule leaf weighs 400 tons.

The 336 foot span was the largest in the world when completed. (426 feet between counterweight ends)
1917 Market St. Bridge, Chattanooga, TN: 358.8 Feet

1940 Erie Ave Bridge, Lorain, OH: 330 Feet

1930 Wabash Ave Bridge, Chicago, IL: 269 Feet
In October 1941 one bascule leaf dropped into the canal as a train crossed. The locomotive and tender went off the collapsed span into the water, killing Engineer Hazel Willis and Conductor Dave Monroe.
Cause is unclear, reportedly triggered by weight of train. It interrupted critical iron ore transportation during the wartime period by blocking the largest canal. Sabotage was ruled out. Bridge was repaired and reopened.
The bridge originally included one swing span at the south end of the bridge. This was replaced in 1959 with a vertical lift span.
This photo shows the span being constructed.
Plans for replacing the bridge in the 1950s included a drawing of the swing span.
Historical photos from this period show two swing spans visible. One of them is likely an emergency swing dam that no longer exists, but may have been like one in Canada.
Overview: Vertical lift bridges raise the bridge superstructure directly up, to provide the clearance for boats to pass. They can clear the entire channel, but there is always a limit to the available clearance they provide.
The 1959 vertical lift bridge is a contrast to the late 19th and early 20th century spans.
1959 Vertical Lift Span

Original plans for bridge construction.
1959 Vertical Lift Span

View of machinery room.
1959 Vertical Lift Span

View inside machinery room.
Photo Credits/Sources:
- HistoricBridges.org
- Historic American Engineering Record
- Randy Mulder
- Upper Peninsula Regional Digitization Center
- Toronto Public Library

Photos may be protected by copyright with all rights reserved.

Email: nathan@historicbridges.org