United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If any item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

historic name Coos Bay Bridge No. 01823
other names/site number Conde B. McCullough Memorial Bridge

2. Location

street & number Oregon Coast Highway No. 9 (US 101), MP 233.99 __ not for publication __
city or town North Bend ____________ vicinity __
state Oregon ____________ code OR ____________ county Coos ____________ code 011
zip code 97459

3. State/Federal/Tribal Agency Certification

As the designated authority under the National Historic Preservation Act of 1986, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets does not meet the National Register Criteria. I recommend that this property be considered significant nationally statewide locally. (See continuation sheet for additional comments.)

[Signature of certifying official / Deputy SHPO]
[Date]
Oregon State Historic Preservation Office
State or Federal agency and bureau

In my opinion, the property meets does not meet the National Register criteria. (See continuation sheet for additional comments.)

[Signature of commenting or other official]
[Date]
State or Federal agency and bureau

4. National Park Service Certification

I, hereby certify that this property is:

[] entered in the National Register
[] See continuation sheet.
[] determined eligible for the National Register
[] See continuation sheet.
[] determined not eligible for the National Register
[] removed from the National Register
[] other (explain):

[Signature of Keeper]
[Date of Action]

[Signature of Keeper]
[Date of Action]
5. Classification

Ownership of Property
(Check as many boxes as apply)

- private
- public-local
- public-State
- public-Federal

Category of Property
(Check only one box)

- building(s)
- district
- site
- structure
- object

Number of Resources within Property
(Do not include previously listed resources in the count)

<table>
<thead>
<tr>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>buildings</td>
</tr>
<tr>
<td></td>
<td>sites</td>
</tr>
<tr>
<td>1</td>
<td>structures</td>
</tr>
<tr>
<td></td>
<td>objects</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Number of contributing resources previously listed in the National Register 0

Name of related multiple property listing
(Enter "N/A" if property is not part of a multiple property listing.)

C. B. McCullough Major Oregon Coast Highway Bridges, 1927-36.

6. Function or Use

Historic Functions
(Enter categories from instructions)

- Transportation

Historic Subfunctions
(Enter subcategories from instructions)

- Road-related

Current Functions
(Enter categories from instructions)

- Transportation

Current Subfunctions
(Enter subcategories from instructions)

- Road-related

7. Description

Architectural Classification
(Enter categories from instructions)

- Late 19th and 20th Century Revivals
 - Classic Revival
 - Late Gothic Revival
- Modern Movement
 - Art Deco
 - Moderne

Materials
(Enter categories from instructions)

- Foundation
- Other
 - Concrete
 - Steel
 - Concrete

Narrative Description
(Describe the historic and current condition of the property on one or more continuation sheets)

See continuation sheets.

8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing)

- A Property is associated with events that have made a significant contribution to the broad patterns of our history.
Coos Bay Bridge No. 01823

Criteria Considerations
(Mark "X" in all the boxes that apply.)

☐ A owned by a religious institution or used for religious purposes.
☐ B removed from its original location.
☐ C a birthplace or a grave.
☐ D a cemetery.
☐ E a reconstructed building, object, or structure.
☐ F a commemorative property.
☐ G less than 50 years of age or achieved significance within the past 50 years.

Areas of Significance
(Enter categories from instructions)

Engineering
Transportation

Period of Significance
1933-36

Significant Dates
Completed in 1936.

Significant Person
(COMPLETE IF CRITERION B IS MARKED ABOVE)

Cultural Affiliation

Architect/Builder
Conde B. McCullough, Oregon State Highway Engineer, designer
Virginia Bridge & Iron Company, Roanoke, Virginia, contractor—cantilever span
Northwest Roads Company, Portland, Oregon, contractor—piers and concrete approaches

Narrative Statement of Significance
(Explain the significance of the property on one or more continuation sheets.)

See continuation sheets.

9. Major Bibliographical References
(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS)
Coos Bay Bridge No. 01823 Coos County, Oregon

- preliminary determination of individual listing (36 CFR 67) has been requested.
- previously listed in the National Register
- previously determined eligible by the National Register
- designated a National Historic Landmark
- recorded by Historic American Buildings Survey #
- recorded by Historic American Engineering Record # OR-46

Primary Location of Additional Data
- State Historic Preservation Office
- Other State agency
- Federal agency
- Local government
- University
- Other

- Name of repository: Prints and Photographs Division, US Library of Congress

10. Geographical Data

Acreage of Property 7.31 acres

UTM References
(Place additional UTM references on a continuation sheet)

1 10 401164 4808705 3
 Zone Easting Northing
2 4
 Zone Easting Northing

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title Robert W. Hadlow, Ph.D., Senior Historian

organization Oregon Department of Transportation date June 30, 2004

street & number 123 NW Flanders Street telephone (503) 731-8239

city or town Portland state OR zip code 97209-4037

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps
- USGS map (7.5 or 15 minute series) indicating the property's location.
- sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
- Representative black and white photographs of the property.

Additional items (Check with the SHPO or FPO for any additional items)

Property Owner
(Complete this item at the request of the SHPO or FPO.)

name Oregon Department of Transportation
Coos Bay Bridge No. 01823

street & number: 355 Capitol Street NE

telephone:

city or town: Salem

state: OR zip code: 97301

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.).

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including the time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Chief, Administrative Services Division, National Park Service, P.O. Box 37127, Washington, DC 20013-7127; and the Office of Management and Budget, Paperwork Reductions Project (1024-0018), Washington, DC 20503.
NATIONAL REGISTER OF HISTORIC PLACES
CONTINUATION SHEET

Section 7 Page 6

Name of Property
Coos Bay Bridge No. 01823

County and State
Coos County, Oregon

Narrative Description

The Coos Bay Bridge is a combination of steel cantilever half-through trusses and reinforced-concrete arches. It spans Coos Bay at milepost 233.99 on the Oregon Coast Highway No. 9 (US 101). Approaching the bay from the north, the bridge follows along an eastern inlet of the bay at a height of about 40 feet above the water before it ascends to a height of 150 feet over the water, before descending to the city of North Bend. The 5,305-foot-long bridge is the longest and most southerly of the five structures completed as part of the Public Works Administration's Oregon Coast Bridges project. It was also the costliest at $2.14 million.

The cantilever design was adopted for the main spans because high volume of shipping made a draw span undesirable. Also, the wide channel and high banks on both sides dictated a high-level bridge. The steel truss is 1,708 feet long, with the central portion being 793 feet and the anchor portions being 457½ feet each. Vertical clearance at the center is 145 feet above mean low water. The top and bottom chords of the truss are curved in outline. The sway bracing is also curved, giving the impression of a series of Gothic arches as one travels underneath on the roadway. Horizontal clearance inside the truss is 27 feet, and vertical clearance is 16'-11". The truss includes no latticework, as minimum steel surface was desired.\(^1\)

Two main towers support the truss. Each of these weighs 34 tons and rises 280 feet above the water. Their cross sections form a Maltese cross motif. The base sections of the towers rest on 3-inch thick steel plates, called anchor shoes, which are anchored into the main piers by bolts.\(^2\)

The bases of the two main piers (9 and 10) are 43' x 90', and the distance between the two provides a main channel clearance of 515 feet. The upper piers rise in two shafts, 11' x 18', cross-braced horizontally and diagonally. Piers 8 and 11 also consist of two shafts rising from a concrete base, cross-braced at their tops by a Gothic arch.\(^3\)

Thirteen reinforced-concrete deck arch spans with open spandrels flank the cantilever spans, seven on the north side and six on the south side. The two lengths total 2,761 feet, with individual spans ranging from 151 feet to 265 feet. Reinforced-concrete deck girder spans approach the arch spans. There are nine on the north end and five on the south end, totaling 835 feet. The roadway is 27 feet wide and the sidewalk on each side is 3'-6" wide.\(^4\)

On the Coos Bay Bridge, McCullough combined the vocabularies of classical and Gothic-style elements with the popular Art Deco and Moderne influences of the late 1920s and the 1930s. The bridge's concrete bents are tiered and ornamented in the Art Deco style primarily with vertical detailing and secondarily with horizontal scoring. Likewise, pier and column surfaces are broken by scoring. However, the web walls between main pier legs were cut away in the form of Gothic arches with sunburst fluting. In addition, ornamental elbow brackets are mounted at the top of the spandrel columns supporting and protruding beyond the sidewalks. The sidewalk balustrades include panels comprising small, stylized Gothic arches, which repeat the form seen in the piers and bents. They are stepped back in the Art Deco philosophy to create shadow lines and increase visual interest.

Pedestrian plazas at both ends of the bridge continue the combination of Gothic, classical, and Art Deco/Moderne elements. Long, elaborate curved stairways descend from each side of the deck to park. Vertical concrete walls along the staircases were draped with chevron motif. Concrete walls of the approach spans and integral to the staircases mimic

\(^1\)Oregon Department of Transportation, Environmental Section, Bridge File #1823, "Engineering Antiquities Survey," November 1982.

\(^2\)"Bridge Weighed Down By 'Anchor Shoes,'" Marshfield Coos Bay Times, 1 June 1936, 7; "Cantilever Erection Plan is Feature of Coos Bay Bridge," Western Construction News, July 1936, 224.

\(^3\)O. A. Chase, "Design of the Coast Highway Bridges," Civil Engineering 6 (October 1936): 650.

\(^4\)Oregon Department of Transportation, Bridge Section, Bridge Log, p.17; "Engineering Antiquities Survey."
courses of cut stone with horizontal scoring and introduce a Moderne element into the design. Quoins are found in the corners. A band of large chevron dentils are tucked in below the sidewalk parapet. Curved concrete seats are mounted along the parapet walls at both entrances to the bridge.

Acting State Bridge Engineer Glenn S. Paxson supervised construction of the five coastal bridges as Conde B. McCullogh had taken a leave of absence to work on bridges in Central America. Raymond Archibald was the resident engineer in charge of construction at Coos Bay. He left to work on the Inter-American Highway with McCullogh in 1935 and was replaced by Dexter R. Smith. Contracts were awarded to the Northwest Roads Company, of Portland, to construct the piers and concrete portions. The Virginia Bridge and Iron Company furnished the steel superstructure. The F. L. Holser Company was subcontracted to erect the steel portions and the S. S. Montague Company to construct the approaches. The PWA engineers on the site were Samuel Michael Patrick Dolan and A. E. Eberhart.

Work commenced the Coos Bay Bridge on 10 July 1934. Two hundred fifty men were employed each week working day and night shifts with a weekly payroll of $7,000. Common laborers earned 50 cents per hour and semi-skilled workers earned 75 cents. Each man worked thirty hours per week in order to employ as many men as possible. The construction consumed five million board feet of lumber for falsework, 51,000 cubic feet of concrete, 3,635 tons of structural steel, and 2,205 tons of reinforcing steel. 217,000 feet of piling was driven and 24,000 cubic yards of excavation was moved. Over 600 piles were driven for each of the two main piers (9 and 10). About one-fifth of the piles under piers 8 and 11 were battered to provide for the unbalanced load. These piers support the anchor arms and one end of the two innermost concrete arches. On the end concrete arches, the outside is on rock and the inside is on piling. Some of the piling for these inside piers is also battered.

Each of the two main towers was shipped to the site in four sections. They were erected by means of a derrick resting on a platform adjacent to the pier. The towers were erected vertical, but later pulled out of plumb towards the anchor arms to counteract the dead load of the cantilever span.

The erection of the truss was done by moving the derrick to the top of the pier. The soft bottom of the bay made it impracticable to erect falsework the entire length of the span. One falsework bent was erected at the second panel point shoreward from the main pier, and the anchor arm was constructed to that point. The erection of the cantilever span was done at the same time as the anchor arm. However, anchor arm construction was kept slightly ahead of cantilever construction in order to keep the structure balanced on the falsework bent. When the length of the anchor arm reached 275 a second falsework bent was constructed at that point and construction progressed shoreward.

McCullogh designed these secondary spans as continuous arches, but employed Armand Considère's hinge near the skewbacks and at the crowns to aid in construction. This method consisted of reducing a section of concrete at the hinge point and leaving the reinforcing steel at the hinge unconnected. After the dead load was placed on the arch, the reinforcing steel was welded together and the concrete poured to make a full section of the arch. McCullogh employed this method in order to reduce the stress of putting the dead load on the arch. The second and third columns at the end of each of the arches were tied rigidly to the deck. In order to reduce the restraining action of the deck on the arch, the

5 "Approaches to Coos Bay Span Are Attractive," Marshfield Coos Bay Times, 1 June 1936, 7; R. H. Baldock, "Bridge Builders' Secrets," Oregon Motorist 16, no. 4 (May 1936): 7; ODOT, Conde B. McCullogh to White & Wyckoff Manufacturing Company, 30 April 1946, in ODOT Environmental Section, Bridge File #1823.

6 "Memory Still Vivid After 50 Years," North Bend News, 7 May 1986, 1.

7 Chase, "Design of the Coast Highway Bridges," 648.

9 Glenn S. Paxson, "Construction of Coast Highway Bridges," Civil Engineering 6, no. 10 (October 1936): 651-55
The Coos Bay Bridge was opened with great fanfare in June 1936, retiring the ferry Oregon from its regular quarter-hour trips across the bay. A weekend festival began on Friday, the fifth, with a 10:00 A.M. coronation of Miss Cherry Golder as Celebration Queen, followed by a parade of cars, floats, school children, bands, pets, and bicycles. The afternoon was filled with sporting events. In the evening, a banquet was held for the Queen and her court. A “Queen’s Ball” ended the day. A marine parade kicked off activities on Saturday the sixth, followed by a luncheon and a dedication by Oregon Governor Charles Martin, another parade, a banquet, fireworks, and another ball.¹¹

The Coos Bay Bridge has required only routine maintenance in its life—painting, cleaning, pier soundings and minor repairs. However, it was forced to close for repairs in December 1986 after being struck by a ship. On 4 December 1986, the Swedish cargo ship \textit{Elgaren} struck the center of the bottom chord. High tide that day was 3 feet above average and a malfunction on the ship made it unable to lower a projecting loading ramp in time to avoid collision. Damage to the lower portion of both lateral supports and some cross bracing had to be repaired. Local residents did not lose their humor during the inconvenience of a closed bridge. Local merchants sold tee shirts that read “Where the Ship Hits the Span.”¹²

¹⁰“Cantilever Erection Plan is Feature of Coos Bay Bridge,” 226; Chase, “Design of the Coast Highway Bridges,” 648.

The Coos Bay Bridge No. 01823 is being nominated under the C. B. McCullough Major Oregon Coast Highway Bridges Multiple Property Submission. It is significant under National Register criterion C because it embodies the distinctive characteristics of a type, period, and method of construction for mid-twentieth-century reinforced-concrete arch bridge technology. Just as important, it is significant under criterion C as the work of a master, Conde B. McCullough, Oregon, state bridge engineer from 1919 to 1936. The bridge is also significant under criterion A for its association with construction of the Oregon Coast Highway, which eventually ran the length of Oregon and connected with adjacent segments in California and Washington. The road would not have been completed without eleven major bridges, including the Coos Bay Bridge, and many other spans.

Gold miners settled along Oregon's South Coast in the 1850s, including around Coos Bay. They mined coal there for the San Francisco market. Others set up sawmills to take advantage of the abundant nearby forests. By the late nineteenth century, Coos Bay became the center of lumber milling on the South Coast. The region was noted for its Port Orford cedar. In 1872, the Coos Bay Wagon Road provided the first land route to the region from Roseburg and inland western Oregon. By 1916, the Pacific Great Western Railway (later the Southern Pacific) completed its rail line from Eugene to Florence and then south to Coos Bay also stimulated the local economy, along with jetty construction at the mouth of the Bay. Construction of the Oregon Coast Highway in the 1920s bypassed primitive local roads and connected Marshfield and North Bend with other communities along the Oregon coast. 3

The Coos Bay Bridge possesses national significance under criterion C as one of the six major bridges that McCullough constructed on the Oregon Coast Highway between 1931 and 1936 and spanned the remaining barriers to efficient travel along the route—three bays and three river estuaries that relied on an outdated ferry service. (The others were the Yaquina Bay Bridge at Newport, Alsea Bay Bridge at Waldport, the Siuslaw River Bridge at Florence, the Umpqua River Bridge at Reedsport, and the Rogue River Bridge at Gold Beach.) Completion of these bridges (one in 1932 and five in 1936) is considered the dividing line between the period of relative isolation and dependence on sea transportation for many of Oregon's coastal communities and their newfound association with each other along this ribbon of asphalt, known as US 101. The Coos Bay Bridge is the longest of the five PWA coastal bridges to be completed in 1936.

The Coos Bay Bridge is also significant under criterion C as the work of a master, Oregon State Bridge Engineer, Conde B. McCullough, and due to its thematic association with several other major steel and reinforced-concrete bridges designed by McCullough and erected along the Oregon Coast Highway in the 1920s and 1930s. During his years as State Bridge Engineer, and later as Assistant State Highway Engineer, McCullough authored several books and many technical articles on bridge design and construction. He is significant for his use of innovative bridge technology, and for his visually appealing designs. He attained international recognition for the large-scale structures he designed to span the major rivers and estuaries, and several other thematically-similar concrete arch, beam, and girder structures, along the Oregon Coast Highway. It was named in honor of McCullough, posthumously, in 1947.

McCullough's bridges also had in common design themes and elements executed in classical, Gothic, and Art Deco/Moderne styles. They are evident on sidewalk railing balustrades; bracketing; arched curtain walls, entrance pylons, columns, stringers, piers, staircases, and other structural members. Eric N. DeLony, chief of the Historic American Engineering Record, remarked in his book, Landmark American Bridges, that this family of spans on the Oregon Coast Highway "represents some of the best and most innovative concrete and steel bridges in the world." The Coos Bay Bridge represents the pinnacle of McCullough's use of Gothic and Art Deco/Moderne architectural elements. The Gothic arch forms seen in the handrails, piers, and steel cantilever spans complement the Art Deco verticalness seen in the pier legs, steel

Over the years, many observers have commented on McCullough's designs for the Coos Bay Bridge. Glenn S. Paxson, acting state bridge engineer at the time of the bridge's construction, and later McCullough's successor as state bridge engineer, offered a rather pedestrian estimation of the structure. He wrote,

I am rather at a loss to list any unusual thing about the Coos Bay Bridge. It can be said that this structure is the longest cantilever span in Oregon. There are, however, many other cantilever spans in the United States which exceed this in length. We have always felt that the most unusual thing about the structure is the attention to appearance given in the design. The usual cantilever structure is far from a thing of beauty, but we feel that in this structure we have at least minimized the unpleasant architectural appearance of the usual cantilever spans.15

However, a more recent reviewer, journalist Nathan Douthit, was a bit more taken by it. He wrote,

The beauty of the bridge lies in its graceful symmetry. Its arches, steel spires, and gridwork reveal the sensitivity of its designer to historical tradition. But McCullough adapted those architectural design elements to the natural setting of Coos Bay in a uniquely harmonious way. The bridge gives pattern to space and light and to the incessant flow as naturally as the topmost branches of a Douglas fir or channels of an offshore reef.16

The Coos Bay Bridge is significant under criterion A because of its association with the construction of the Oregon Coast Highway in the 1930s. Completion of the Oregon Coast Highway was a major public works effort in the early and mid-1930s to establish an uninterrupted transportation route from California to Washington. The effort was aided by the Oregon Coast Bridges Project in which the federal Public Works Administration provided funds for the construction of five modern bridges to replace the existing slow, cumbersome ferries that crossed the larger bays, rivers and estuaries. An immediate accomplishment of the route's completion was the construction jobs that it provided to many unemployed workers. In more long-lasting terms, the highway's completion was a major factor in the development of commerce and tourism in Oregon's coastal regions, and it has since become one of the most notable scenic routes in the United States. The Oregon Coast Highway is worthy of its recent designation as a National Scenic Byway.

The Coos Bay Bridge meets the property type and registration requirements for the C. B. McCullough Major Oregon Coast Highway Bridges Multiple Property Submission. It was completed during the period of significance (1927-36) on the then current alignment of the Oregon Coast Highway. It was designed by Oregon State Highway Department bridge engineers under the direction of Conde B. McCullough. Its primary or secondary main spans are reinforced-concrete arches. It possesses a high degree of original integrity of design and materials.

15G. S. Paxson, Bridge Engineer to Charles E. Wilson 2 October 1941, in ODOT, Bridge Section Maintenance File #1823.
Major Bibliographic References

"Approaches to Coos Bay Span Are Attractive." *Marshfield Coos Bay Times*, 1 June 1936, 7.

"Bridge Weighed Down By 'Anchor Shoes." *Marshfield Coos Bay Times*, 1 June 1936, 7.

"History of Coast Bridge Program is Interesting." *North Bend Harbor*, 28 May 1936.

"Lovely Settings to Be Provided for New Bridges." *Marshfield Coos Bay Times*, 1 June 1936.

"Lumbermen to Meet to Protest Concrete for 5 Coast Bridges." *Cottage Grove Sentinel*, 7 July 1933.

"North Bend Backs Bridge Engineers." *North Bend Harbor*, 6 July 1933.

"Memory Still Vivid After 50 Years." *North Bend News*, 7 May 1986, 1.

Oregon Department of Transportation. Bridge Section Maintenance File #1499.

--------. *Twelfth Biennial Report, for 1935-36*.

Paxson, G. S. "Construction of Coast Highway Bridges." *Civil Engineering* 6, no. 10 (October 1936): 651-55.

Paxson, G. S. to Charles E. Wilson, *Coos Bay Times* 2 October 1941. In Oregon Department of Transportation, Bridge Section Files.
Coos Bay Bridge No. 01823
Name of Property
Coos County, Oregon
County and State

Verbal Boundary Description

The property is described as beginning at the north end of the Coos Bay Bridge, at mile post 233.99 on the Oregon Coast Highway No. 9, and running 5,305 feet to the south end of the bridge. It is 60 feet wide (30 feet either side of center line on the bridge).

Boundary Justification

The boundary includes property associated historically with the Coos Bay Bridge.
Photographs

James B. Norman, Photographer, June 2003

(Original negatives housed at Oregon Department of Transportation, Salem, Oregon)

Photographic Description

<table>
<thead>
<tr>
<th>View No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General perspective view of the Coos Bay Bridge, view looking northeast.</td>
</tr>
<tr>
<td>2</td>
<td>General perspective view of the bridge, view looking northwest.</td>
</tr>
<tr>
<td>3</td>
<td>General view of the bridge, view looking northwest.</td>
</tr>
<tr>
<td>4</td>
<td>General view of the bridge, view looking northwest.</td>
</tr>
<tr>
<td>5</td>
<td>General view of the bridge, view looking northeast.</td>
</tr>
<tr>
<td>6</td>
<td>General view of the bridge, view looking northeast.</td>
</tr>
<tr>
<td>7</td>
<td>General view of the bridge, view looking northeast.</td>
</tr>
<tr>
<td>8</td>
<td>Detail view of the cantilevered through truss spans, view looking northwest.</td>
</tr>
</tbody>
</table>

Leslie Schwab, Photographer, July 2004

(Original negatives housed at Oregon Department of Transportation, Salem, Oregon)

Photographic Description

<table>
<thead>
<tr>
<th>View No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Detail view of the truss portal, view looking north.</td>
</tr>
<tr>
<td>10</td>
<td>Detail view of the steel and concrete railings, view looking southeast.</td>
</tr>
<tr>
<td>11</td>
<td>Detail view of the riveted truss connections.</td>
</tr>
<tr>
<td>12</td>
<td>Detail view of the pedestrian feature at the southeast corner of the bridge, view looking west.</td>
</tr>
<tr>
<td>13</td>
<td>Detail view of the concrete pedestrian railing and pedestrian access to park below, view looking northwest.</td>
</tr>
<tr>
<td>14</td>
<td>Detail view of the bridge plaque, view looking north.</td>
</tr>
<tr>
<td>15</td>
<td>Detail view of Tudor arched approach span pier, view looking southwest.</td>
</tr>
</tbody>
</table>
Coos Bay Bridge No. 01823
MP 233.99, Oregon Coast Highway No. 9
Coos Bay, Coos Bay County, Oregon
Coos Bay #01823
US-101 MP 233.99
Coos County
North Bend

259 12-4-35
McCULLOUGH BRIDGE
DEDICATED TO THE MEMORY OF
CONDE BALCOM MCCULLOUGH
WHOSE GENIUS AND INSPIRATION ARE MANIFEST IN THE DESIGN OF THIS BRIDGE AND MANY OTHER OREGON BRIDGES DURING HIS PERIOD OF SERVICE AS BRIDGE ENGINEER AND ASSISTANT STATE HIGHWAY ENGINEER 1925 TO 1936.